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Cards

There are 81 = 34 cards in a game of SET.
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What is a SET?

An example of a SET.

An example of a SET.

An example of a SET. A non-example of a SET.
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Encoding SET as a Vector Space

Since each card is uniquely determined by its 4 attributes, each of which have 3 options,
we can encode cards as elements of F4

3 (where F3 = Z/3Z denotes the field with 3
elements).
For example:

←→ Three Striped Purple Diamonds ←→ (3, 2, 3, 1)
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SETs in F4
3

Question: What does a SET correspond to in F4
3?

First note that if α, β, γ ∈ F3, then α + β + γ = 0 if and only if α = β = γ or
{α, β, γ} = {0, 1, 2}.

It is now clear that a SET corresponds to a triple of points a, b, c ∈ F4
3 with

a + b + c = (0, 0, 0, 0).

Since 2 = −1 ∈ F3, we have:

b − c = b − c + (a + b + c) = a + 2b = a− b

This means that a SET corresponds to a line in F4
3.
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Generalising SET

The choice that there are 4 characteristics per card was arbitrary. So we could choose
any number d of characteristics.

· · ·

d = 1 d = 2 d = 3 · · ·

F3 F2
3 F3

3 · · ·
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d-Caps

We call a subset X ⊆ Fd
3 a d-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-capd-cap if there are no distinct a, b, c ∈ X such that

a + b + c = 0 ∈ Fd
3 .

This is equivalent to a subset X which contains no lines.

One interesting question here is what is the maximal size of a d-cap.
For d = 4, this corresponds to the question:

In a standard game of SET, what is the maximal size of a
collection of cards that contain no SETS?
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Maximal 1-cap and 2-cap

d = 1 d = 2

All cards

Maximal d-cap
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Maximal 3-cap

How about for d = 3?

All cards Maximal d-cap
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Maximal 4-cap
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Maximal d-caps

These are the only maximal d-caps that can be readily found by exhaustive computer
search.

d 1 2 3 4 5 6 7
Size of Maximal d-cap 2 4 9 20

45 112 ≤? ≤ 114 ?

The maximal size for d = 5 was found in 2006, using a novel approach to radically
reduce the number of cases to check.
No further exact values are known.
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